Counting factorizations of Coxeter elements into products of reflections

نویسندگان

  • Guillaume Chapuy
  • Christian Stump
چکیده

In this paper, we count factorizations of Coxeter elements in wellgenerated complex reflection groups into products of reflections. We obtain a simple product formula for the exponential generating function of such factorizations, which is expressed uniformly in terms of natural parameters of the group. In the case of factorizations of minimal length, we recover a formula due to P. Deligne, J. Tits and D. Zagier in the real case and to D. Bessis in the complex case. For the symmetric group, our formula specializes to a formula of B. Shapiro, M. Shapiro and A. Vainshtein.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Note on the Transitive Hurwitz Action on Decompositions of Parabolic Coxeter Elements

In this note, we provide a short and self-contained proof that the braid group on n strands acts transitively on the set of reduced factorizations of a Coxeter element in a Coxeter group of finite rank n into products of reflections. We moreover use the same argument to also show that all factorizations of an element in a parabolic subgroup of W also lie in this parabolic subgroup.

متن کامل

Factorizations of Coxeter Elements in Complex Reflection Groups

In [CS12], Chapuy and Stump studied factorizations of Coxeter elements into products of reflections in well-generated, irreducible complex reflection groups, giving a simple closed form expression for their exponential generating function depending on certain natural parameters. In this work, their methods are used to consider a more general multivariate generating function FACW (u1, . . . , u`...

متن کامل

A Refined Count of Coxeter Element Reflection Factorizations

For well-generated complex reflection groups, Chapuy and Stump gave a simple product for a generating function counting reflection factorizations of a Coxeter element by their length. This is refined here to record the number of reflections used from each orbit of hyperplanes. The proof is case-by-case via the classification of well-generated groups. It implies a new expression for the Coxeter ...

متن کامل

Reflection Factorizations of Singer Cycles

The number of shortest factorizations into reflections for a Singer cycle in GLn(Fq) is shown to be (qn − 1)n−1. Formulas counting factorizations of any length, and counting those with reflections of fixed conjugacy classes are also given. The method is a standard character-theory technique, requiring the compilation of irreducible character values for Singer cycles, semisimple reflections, and...

متن کامل

Bounding Reflection Length in an Affine Coxeter Group

In any Coxeter group, the conjugates of elements in the standard minimal generating set are called reflections and the minimal number of reflections needed to factor a particular element is called its reflection length. In this article we prove that the reflection length function on an affine Coxeter group has a uniform upper bound. More precisely we prove that the reflection length function on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. London Math. Society

دوره 90  شماره 

صفحات  -

تاریخ انتشار 2014